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Abstract

We present a solution method for fully implicit radiation diffusion problems dis-

cretized on meshes having millions of spatial zones. This solution method makes

use of high order in time integration techniques, inexact Newton–Krylov nonlinear

solvers, and multigrid preconditioners. We explore the advantages and disadvantages

of high order time integration methods for the fully implicit formulation on both

two- and three-dimensional problems with tabulated opacities and highly nonlinear

fusion source terms.
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1 Introduction

The simulation of nonlinear and coupled physical phenomena requires effi-

cient numerical methods for solution. One application which is computation-

ally intensive is modeling transport of neutral particles. Simulations of this

application are important in calculations relevant to astrophysics, shielding,

inertial confinement fusion, and atmospheric radiation. The Boltzmann trans-

port equation is often used for modeling these problems. Due to the six degrees

of freedom present in this equation, diffusion approximations are often used to

give coarse estimates of solutions. Solution of the nonlinear diffusion approx-

imation is still a demanding task, however, and the need for computational

methods to efficiently solve these problems is still required.

In this paper, we present a fully implicit solution method for radiation diffusion

problems. Fully implicit methods can allow for larger time steps and more

accurate solves for a given amount of work than can explicit or semi-implicit

methods. Our method makes use of high order in time integration techniques,

inexact Newton–Krylov nonlinear solvers, and multigrid preconditioners. We

target problems discretized on meshes having millions of spatial zones.

The first work on implicit solution of radiation diffusion problems was done

by Axelrod, et.al. in 1984 when they presented a solution method using a high
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order GEAR ODE solver [1] for integration in time coupled with a Newton

method and an approximate direct solver [2]. Their work showed a distinct

advantage in both accuracy and run time of the implicit solver over an oper-

ator split approach on multigroup diffusion in one dimension. This work did

not, however, follow with development of solvers for large-scale problems. In

particular, the very effective Newton-Krylov methods [3–5] were not applied

to implicit radiation diffusion problems until much later. One obstacle to use

of these methods was the requirement of effective preconditioners for the lin-

ear Jacobian systems. In 1999 Rider, Knoll, and Olson applied these methods

along with multigrid preconditioning to one- and two-dimensional equilibrium

problems and showed substantial benefit in accuracy of a second order in time

fully implicit solver over a second order in time semi-implicit solver where

nonlinearities are lagged between time steps [6,7].

For semi-implicit methods, time steps are often chosen to be small enough

to maintain accuracy despite explicit (or lagged) parts of the computation.

When moving to an implicit method, however, the question of how to choose

the time step should be revisited since an implicit method generally allows a

larger step size for a given accuracy within a computation. Rider and Knoll

suggested a method of choosing steps for the fully implicit formulation by using

a hyperbolic model of the system [8]. Brown, et.al. simultaneously pursued

implicit methods based on the work of Axelrod et.al. and employed ODE time

integrator technology for three-dimensional multigroup diffusion [9]. These

methods choose time steps based on solution accuracy requirements of the

user and local time truncation error estimates [10].

Mousseau, Knoll, and Rider extended the work of Rider, Knoll, and Olson

to problems where the radiation and matter fields are not in equilibrium.
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They again applied Newton-Krylov methods with first and second order time

stepping on two-dimensional problems [11,12]. They used an operator splitting

method and multigrid for preconditioning. Brown and Woodward, also looking

at non-equilibrium problems, developed an effective Schur complement-based

preconditioner and demonstrated parallel scalability of a fully implicit solver

based on high order time integration, Newton-Krylov methods, and semicoars-

ening multigrid techniques on three-dimensional problems with hundreds of

millions of unknowns [13]. They found that preconditioners for the implicit

system need to account for the coupling between matter and radiation ef-

fectively and also showed that the choice of preconditioner is crucial to the

success of the fully implicit solve for large-scale problems.

More recently, implicit formulations of radiation diffusion have been combined

with hydrodynamics problems in a coupled manner. Bates et.al. have devel-

oped a nonlinearly consistent solver for the coupled system [14]. Howell and

Greenough have also extended implicit diffusion methods to include coupled

problems with hydrodynamics within the context of adaptive mesh refinement

[15]. Recent work in the area has also included investigations into the relative

performance of Newton-Krylov methods with nonlinear multigrid techniques

[16]. These studies have shown that Newton-Krylov is in general faster for

these problems, but that nonlinear multigrid can have advantages in early

time steps [17–19].

With the exception of the original work by Axelrod, et.al. and the work of

Brown and Woodward, the above work does not consider high order time in-

tegration and tabulated opacities. High order methods can result in significant

benefits in run time reduction while maintaining high accuracy. Care must be

taken, however, in how these methods are applied as poor tolerance selection
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can lead to instabilities. In addition, when using Newton-Krylov methods, a

nonlinear residual evaluation is required at each linear iteration. These evalua-

tions require re-computation of opacity values from tables leading to possible

discontinuities and computational expense. Lastly, none of the above work

examines performance of implicit solvers for problems with highly nonlinear

fusion source terms.

In this paper, we present a fully implicit solution method based on ODE time

integration technology targeting large-scale radiation diffusion problems. We

examine its advantages and disadvantages as compared to that of a semi-

implicit method for three-dimensional problems with tabulated opacities from

the LEOS equation of state library [20]. We also consider nonlinearities intro-

duced from fusion source terms in the material energy equation. These terms

are highly nonlinear and give rise to a potentially difficult nonlinear problem

within the implicit formulation. Our results indicate that a fully implicit solu-

tion approach can achieve more accurate solutions than semi-implicit solution

methods in many simulations involving the interaction of radiation and matter

with highly nonlinear source terms. Furthermore, the fully implicit approach

can be as cost effective as semi-implicit approaches in many cases despite the

use of tabulated values for the opacities. Lastly, the solution approach is shown

to scale well to very large problems solved on parallel machines.

In the next section of this paper, we outline the model problem we are con-

sidering. The section following overviews both our fully implicit method and

a semi-implicit solution method to which we compare, as well as the nonlin-

ear and linear solvers we use. In the results section, we give comparisons of

the two methods, examinations of some algorithmic elements of our solution

strategy, and some demonstrations of our method’s performance on a large,
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parallel machine. We conclude with some remarks about the viability of fully

implicit methods on radiation diffusion problems.

2 Flux-Limited Radiation Diffusion Model

For this work, we consider the flux-limited, two-temperature formulation of

radiation diffusion given by [21,22]

∂ER

∂t
=∇ ·


 c

3ρκR(TR) + ‖∇ER‖
ER

∇ER


 + cρκP (TM) ·

(
aT 4

M − ER

)

+χ(x)caT 4
source, (1)

where ER(x, t) is the radiation energy density (x = (x, y, z)), TM(x, t) is the

material temperature, ρ(x) is the material density, c is the speed of light, and

a = 4σ/c where σ is the Stephan–Boltzmann constant. The Rosseland opacity,

κR, is a nonlinear function of the radiation temperature, TR, which is defined

by the relation ER = aT 4
R. The Planck opacity, κP , is a nonlinear function of

material temperature, TM , which is related to the material energy through an

equation of state, EM = EOS(TM). Here, Tsource is a given source temperature,

and χ(x) is a function of the spatial variable x. In the limiter, the norm ‖ · ‖
is taken to be the l2 norm of the gradient vector.

This equation is coupled to an equation expressing conservation of material

energy given by

∂EM

∂t
= −cρκP (TM) ·

(
aT 4

M − ER

)
+ µ(x, t)T 5

M , (2)

where µT 5
M is a fusion source term with µ(x, t) a function of both space and

time.
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This system is highly nonlinear due to the opacity dependences on temper-

atures as well as the fusion source term. Opacities typically depend on tem-

peratures as a power law with typical expressions like κ = CT−p where C

is a constant, and p may be 3 − 5 depending on the material and physical

regime [23,24]. We consider Dirichlet, Neumann, and Robin boundary con-

ditions for the system (1)–(2), and our focus here is on the development of

solution methods for this system.

3 Solution Methods

For both the fully implicit and semi-implicit formulations, we employ a cell-

centered finite difference approach for the spatial discretization. We use a

tensor product grid with Nx, Ny, and Nz cells in the x, y, and z directions,

respectively. Defining ER,i,j,k(t) ≈ ER(xi,j,k, t) and EM,i,j,k(t) ≈ EM(xi,j,k, t),

with xi,j,k = (xi, yj, zk), and

ER ≡




ER,1,1,1

...

ER,Nx,Ny ,Nz




and EM ≡




EM,1,1,1

...

EM,Nx,Ny ,Nz




,

we can write our discrete equations in terms of a discrete diffusion operator

given by

L(ER) ≡
(
L1,1,1(ER), · · · , LNx,Ny ,Nz(ER)

)T
, (3)
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a local coupling operator given by

S(ER,EM) ≡ (S1,1,1(ER,EM), · · · , SNx,Ny ,Nz(ER,EM))T , (4)

and a material source term

R(EM) ≡ (R1,1,1(EM), · · · , RNx,Ny ,Nz(EM))T , (5)

where

Li,j,k(ER) ≡(
Di+1/2,j,k

ER,i+1,j,k − ER,i,j,k

∆xi+1/2,j,k

− Di−1/2,j,k
ER,i,j,k − ER,i−1,j,k

∆xi−1/2,j,k

)
/∆xi (6)

+

(
Di,j+1/2,k

ER,i,j+1,k − ER,i,j,k

∆yi,j+1/2,k

− Di,j−1/2,k
ER,i,j,k − ER,i,j−1,k

∆yi,j−1/2,k

)
/∆yj

+

(
Di,j,k+1/2

ER,i,j,k+1 − ER,i,j,k

∆yi,j,k+1/2

− Di,j,k−1/2
ER,i,j,k − ER,i,j,k−1

∆zi,j,k−1/2

)
/∆zk

with

Di+1/2,j,k ≡ c

3ρi+1/2,j,kκR,i+1/2,j,k + ‖∇ER‖i+1/2,j,k/ER,i+1/2,j,k

,

Di−1/2,j,k ≡ c

3ρi−1/2,j,kκR,i−1/2,j,k + ‖∇ER‖i−1/2,j,k/ER,i−1/2,j,k

,

Di,j+1/2,k ≡ c

3ρi,j+1/2,kκR,i,j+1/2,k + ‖∇ER‖i,j+1/2,k/ER,i,j+1/2,k

,

Di,j−1/2,k ≡ c

3ρi,j−1/2,kκR,i,j−1/2,k + ‖∇ER‖i,j−1/2,k/ER,i,j−1/2,k

,

Di,j,k+1/2 ≡ c

3ρi,j,k+1/2κR,i,j,k+1/2 + ‖∇ER‖i,j,k+1/2/ER,i,j,k+1/2

,

Di,j,k−1/2 ≡ c

3ρi,j,k−1/2κR,i,j,k−1/2 + ‖∇ER‖i,j,k−1/2/ER,i,j,k−1/2

,

and

Si,j,k(ER,i,j,k, EM,i,j,k) = cρi,j,kκP,i,j,k

(
aT 4

M,i,j,k − ER,i,j,k

)
, and (7)

Ri,j,k(EM,i,j,k) = µi,j,kT
5
M,i,j,k. (8)
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Thus, our discrete scheme is to find ER(t) and EM(t) such that,

dER

dt
= L(ER) + S(ER,EM) + Q, (9)

dEM

dt
= −S(ER,EM) + R(EM), (10)

where Q includes the source term along with terms from the discretized bound-

ary conditions. For more details, see [13].

3.1 Fully Implicit

For the fully implicit formulation, we use an ODE time integrator to han-

dle the implicit time step selection for the system (9)-(10). In particular, we

employ the parallel ODE solver, CVODE [10], developed at Lawrence Liver-

more National Laboratory and based on the VODPK package [25]. CVODE

employs the fixed leading coefficient variant of the Backward Differentiation

Formula (BDF) method [26,27] and allows for variation in the order of the

time discretization as well as in the time step size.

The methods in CVODE are Predictor-Corrector in nature, and so each time

step begins with the calculation of an explicit predictor. An implicit corrector

is then employed to solve for the time step solution. This time integration

technique leads to a coupled, nonlinear system of equations that must be

solved at each time step. For example, solving the ODE system

ẏ = f(t, y), (11)

with the backward Euler method (i.e., the BDF method of order 1), leads to
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the following nonlinear system

0 = F (y) ≡ y − ∆tf(tn, y) − yn−1

(
i.e.,

yn − yn−1

∆t
= f(tn, yn)

)
(12)

that must be solved for y = yn at each time step. For the solution of this sys-

tem, we use an inexact Newton–Krylov method with Jacobian-vector products

approximated by finite differences of the form

F ′(y)v ≈ F (y + θv) − F (y)

θ
, (13)

where θ is a scalar. Within the Newton–Krylov paradigm, only the implemen-

tation of the nonlinear function is necessary, and Jacobian matrix entries need

never be formed or stored. Heuristic arguments for the case of systems arising

from the implicit integration of ODEs show that θ = 1 works quite well [28]

and is the choice used in CVODE. Finally, the explicit predictor, yn(0), is used

as an initial guess to the nonlinear system (12).

In the methods discussed above, we use the scaling technique incorporated into

CVODE. Thus, we include an absolute tolerance (ATOL) for each unknown

and a relative tolerance (RTOL) applied to all unknowns. These tolerances are

then used to form a weight that is applied to each solution component during

the time step from tn−1 to tn. This weight is given as

wi = RTOL · |yi
n−1| + ATOLi, (14)

and then the weighted root mean square norm

‖y‖WRMS =

[
N−1

N∑
i=1

(yi/wi)
2

]1/2

(15)

is applied on all error-like vectors within the solution process. This scaling
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gives each solution component equal weight when measuring the size of errors

in y. For our application, we supply two absolute tolerances, one to be used

with the radiation energy unknowns and one to be used with the material

energy unknowns.

Time step sizes are chosen in an attempt to maximize step sizes while con-

trolling the local truncation error, and thus give a solution that obeys a user-

specified accuracy bound. The local truncation error (LTE) can, in general,

only be estimated, and so CVODE uses the estimate

LTE(∆tn) ≡ Cq(yn − yn(0)), (16)

where yn is the final iterate in the Newton iteration and Cq is a constant that

depends on the BDF method order q but is independent of the solution. If

‖LTE(∆tn)‖WRMS < 1, then the time step is accepted. If this condition is

violated, the step size is cut, and the solution is recomputed. New steps are

chosen by estimating the local truncation error at the new step, ∆t′, as

‖LTE(∆t′)‖WRMS ≈
(

∆t′

∆tn

)q+1

‖LTE(∆t)‖WRMS, (17)

where q is the current method order. The new step is chosen to give the largest

time step still satisfying ‖LTE(∆t′)‖WRMS < 1. CVODE also changes the BDF

method order by comparing the local truncation errors for the BDF methods

of order q − 1 and q + 1 when using order q, and then taking the order that

allows the largest time step.

We use the GMRES Krylov iterative solver for solution of the linear Jacobian

system at each Newton iteration [29]. The tolerance for the Newton iteration

is taken to guarantee that iteration error introduced from the nonlinear solver
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is smaller than the local truncation error. The default linear system tolerance

in CVODE is taken to be the factor α = 0.05 times the nonlinear system

tolerance. This factor can be optionally set in the CVODE solver, and for some

of the problems discussed below we use a smaller value of α, as the default of

0.05 did not work for the larger RTOL values. The default maximum subspace

dimension for GMRES in CVODE is 5, and we use this default in all of our

tests.

Preconditioning is generally essential when using Krylov linear solvers. To

describe our preconditioning strategy, we begin by considering the content

and structure of the Jacobian matrix. In (11), set y = (ET
R,ET

M)T , and then

form f using the right-hand sides of (9)-(10). The Jacobian matrices used in

the Newton method are of the general form F ′(y) = (I−γJ), where J = ∂f/∂y

is the Jacobian of the nonlinear function f , and the parameter γ ≡ ∆tβ with

∆t the current time step value and β a coefficient depending on the order

of the BDF method. Recalling the definitions of the discrete divergence and

source operators, the block form of the Jacobian of f is

J =




∂L/∂ER + ∂S/∂ER ∂S/∂EM

−∂S/∂ER −∂S/∂EM + ∂R/∂EM




=




A + G B

−G −B + C




,

where A = ∂L/∂ER, G = ∂S/∂ER, B = ∂S/∂EM , and C = ∂R/∂EM . We

note that G,B and C are diagonal matrices.
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On close inspection of the nonlinear diffusion operator L(ER), we can write

L(ER) = L̂(ER)ER, (18)

where L̂ is a nonlinear matrix-valued function of ER. In all of our precondi-

tioning strategies, we neglect the nonlinearity in the diffusion term and use

the approximation

A = ∂L(ÊR)/∂ER ≈ L̂(ÊR) ≡ Ã,

where ∂L(ÊR)/∂ER is the Jacobian of L evaluated at a radiation energy, ÊR.

The size of the neglected term is related to the derivatives of the Rosseland

opacity and the flux-limiter. Our motivation for neglecting this term arises

from the fact that −Ã is symmetric and positive definite, whereas −A is not.

In addition, the derivative of the flux-limiter may lead to numerical errors if

∇ER approaches 0.

Our preconditioning strategy is to factor the matrix




P Q

U T




≡




I − γ(Ã + G) −γB + γC

γG I + γB




= M

into the following:

MSchur =




I QT−1

0 I







P − QT−1U 0

0 T







I 0

T−1U I




.
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Letting S = P − QT−1U , we write the solution to MSchurx = b as




x1

x2




=




S−1(b1 − QT−1b2)

T−1(−Ux1 + b2)




.

If the Schur complement, S, is exactly inverted, there will be no error associ-

ated with this preconditioner for the non-flux-limited, constant opacity case.

In addition, because B,C and hence T is diagonal, there is no penalty associ-

ated with inverting T for every iteration of a method that inverts S, as there

would be if a material energy diffusion term were added to the equations. Also

note that S is formed by modifying the diagonal of P . Hence, we can employ

multigrid methods to invert this Schur complement.

The Rosseland opacity will exhibit large changes where material interfaces

exist in the domain. The temperature dependence gives rise to large value

changes as well. These changes imply that the problem can be very heteroge-

neous. As a result, to invert matrix blocks formed from the diffusion operator,

we use a multigrid method designed to handle large changes in problem coef-

ficients. In particular, we use one V-cycle of the SMG algorithm developed by

Schaffer [30,31] as our multigrid solver. Other multigrid methods have been

developed for highly heterogeneous problems. A comparison of SMG and an-

other of these methods can be found in [32]. We use SMG here because it is

highly robust and scales well. Details of the SMG method can be found in the

cited references. More information about multigrid methods in general can be

found in [33].

Since Jacobian approximations can be expensive to compute, in CVODE the

preconditioner is not updated with every Newton iteration. Preconditioner

14



updates occur only when the Newton iteration fails to converge, 20 time steps

pass without an update, or when there is a significant change in the time step

size and order of the ODE method.

In summary, the main advantage of the fully implicit method is that we have

accurate error control in the time step selection process allowing step sizes to

automatically adjust to the problem physics while maintaining accuracy. The

main disadvantage of the method is that opacities must be calculated for every

linear iteration, as a nonlinear function evaluation is required in the matrix-

vector product approximation (13). In general, fully implicit methods require

more sophisticated solvers than semi-implicit methods. The solution method

presented above has been tested on very large, three-dimensional problems

and has been shown to be parallel scalable up to almost 6,000 processors [13].

3.2 Semi-Implicit

In the semi-implicit method we compare against, a backward Euler time step-

ping technique is applied, wherein opacities, flux-limiters, and material sources

are evaluated at the start of a new time step using the solution from the pre-

vious step, and the coupling term is linearized about the solution from the

previous step. The problem is put in a residual formulation so that the single

linear solve required at each time step gives the increment to the solution

values from the previous step’s solution.

Beginning with the discrete system (9)–(10) and using (18), we can write

En+1
R − En

R

∆t
= L̂(En

R)En+1
R + K(Tn

M)(a(Tn+1
M )4 − En+1

R ) + Qn+1, (19)
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En+1
M − En

M

∆t
= −K(Tn

M)(a(Tn+1
M )4 − En+1

R ) + R(Tn+1
M ), (20)

where K(Tn
M) is a diagonal matrix with entries given by Ki,j,k ≡ cρκP (T n

M,i,j,k)

and En+1
M,i,j,k = EOS(T n+1

M,i,j,k). Next, letting Tn+1
M = Tn

M +∆Tn
M we linearize to

obtain

(Tn+1
M )4 = (Tn

M + ∆Tn
M)4 ≈ (Tn

M)4 + 4(Tn
M)3∆Tn

M .

Similarly, we linearize EM = EOS(TM) to obtain

En+1
M = EOS(Tn

M + ∆Tn
M) ≈ EOS(Tn

M) +
∂EOS

∂TM

(Tn
M)∆Tn

M ,

or

En+1
M − En

M ≈ ∂EOS

∂TM

(Tn
M)∆Tn

M .

Thus,

(Tn+1
M )4 ≈ (Tn

M)4 + 4(Tn
M)3

[
∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M).

We apply a similar linearization to the fusion source term, µ(T n+1)5. Substi-

tuting this last relationship into (19)–(20), we have

En+1
R − En

R = ∆tL̂(En
R)En+1

R + ∆tQn+1 + ∆tK(Tn
M) · (21)

a


(Tn

M)4 + 4(Tn
M)3

[
∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M)


 − En+1

R


 ,

and

En+1
M − En

M = ∆tµ
[
(Tn

M)5 + 5(Tn
M)4· (22)[

∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M)


 − ∆tK(Tn

M) ·
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
a


(Tn

M)4 + 4(Tn
M)3

[
∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M)


 − En+1

R


 ,

where we solve for the changes, ∆En
R ≡ En+1

R −En
R and ∆En

M ≡ En+1
M −En

M ,

given the previous values of En
R and En

M .

We solve the linear system (21)–(22) using the same linear solver as described

above: the GMRES Krylov iterative solver with a Schur complement factor-

ization preconditioner. The same multigrid method is used to invert the Schur

complement matrix as in the fully implicit case. The linear iteration is per-

formed until the relative residual is bounded by an input tolerance times the

norm of the right-hand side,

‖r‖WRMS ≤ ε‖b‖WRMS, (23)

where r is the linear system residual, b is the linear system right-hand side,

and ε is an input parameter. The WRMS norm is calculated in the same way

as that for CVODE, using RTOL and ATOL values chosen as in the CVODE

case.

Time steps are chosen to try to restrict changes in radiation energy and mate-

rial temperature within a step. For specified minimum values, Emin and Tmin,

and specified fractional variations allowed in a step, Efrac and Tfrac, the new

step is computed by first calculating a maximum variation for each variable,

vR = max
i,j,k

(
∆En

R

0.5(En−1
R + En

R) + Emin

)
, and

vM = max
i,j,k

(
∆T n

M

0.5(T n−1
M + T n

M) + Tmin

)
.
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Then, the new step is chosen as

∆tnew = ∆told · min(Efrac/(vR + δ), Tfrac/(vM + δ)), (24)

where δ = 10−7 limits the maximum change in the step size. Note that this

selection process is similar to the error control for the fully implicit case.

However, while the semi-implicit approach bounds the maximum change in

solution components over a time step, the fully implicit approach is bounding

the maximum local truncation error made on a step with no direct control on

the solution components. Finally, if the linear iteration fails to converge, then

the step is repeated with ∆tnew = 0.5 · ∆told.

To see the similarity, consider the radiation energy case. The semi-implicit

method selects the step so that

vR/Efrac =
∆En

R

0.5(En−1
R + En

R)Efrac + EminEfrac

< 1. (25)

Taking ATOLR = EminEfrac, RTOL = Efrac, and noting that 0.5(En−1
R +

En
R) is an approximation to the current radiation energy, we see that the ith

component of the variation that is being bounded in the semi-implicit case is

just,

∆En
R

RTOL · En
R + ATOL

. (26)

The variation in local truncation error that is bounded in the fully implicit

case is just this expression. But instead of looking at the variation over a

time step in ∆En
R, we look at the variation between the predictor and the

corrector. Since the error in each of these approximations can be bounded,

the variation in the predictor and corrector gives us a concrete estimate on
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the local truncation error.

4 Numerical Results

In this section we present numerical results of solving nonlinear diffusion prob-

lems with the high order fully implicit method. We compare the method with

a semi-implicit scheme for both accuracy and computational speed. We also

investigate some of the advantages of the high order integration method and

look at which orders give the highest benefit. Lastly, we show results of solving

very large-scale nonlinear diffusion problems in parallel.

In the following subsections, the numerical statistical counters and parameters

are

RTOL = relative tolerance,

MO = maximum order allowed, implicit method only

NST = time steps,

NNI = nonlinear iterations,

NLI = linear iterations,

RT = run time in seconds,

FAC = specified fractional variation allowed in both energies

within a step, semi-implicit only.

In the following examples we will use step and bi-cubic functions to define the
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spatial and temporal extent of the source functions χ(x) and µ(x, t) in (1) and

(2) respectively, given by

H(x, ε) ≡



1, if |x| ≤ ε;

0, otherwise.

B(x, ε) ≡




2
(

ε+x
2ε

)2 (
6 − 8 ε+x

2ε

)
, if −ε < x ≤ 0;

2
(

ε−x
2ε

)2 (
6 − 8 ε−x

2ε

)
, if 0 ≤ x < ε;

0, otherwise.

4.1 Demonstration of accuracy

In this section, we present a test case which demonstrates accuracy of the

fully implicit and semi-implicit codes compared to analytic solutions. All runs

in this and the next subsection were done on a single processor in a Compaq

cluster of 1 GHz EV68 Alpha processors.

Our first numerical test case is the Su-Olson problem, a one-dimensional Mar-

shak problem that has a published analytic solution [34]. The problem starts

with a homogeneous initial condition for the radiation and material tempera-

ture. A Robin boundary condition of the form,

E(0, t) −
(

2

3κR

)
∂E(0, t)

∂x
= 1, (27)

is applied at x = 0, and a homogeneous Dirichlet condition is applied at

x = ∞. In practice, this right-hand boundary condition is applied at x = 20.

The material specific heat is given by, cv = a
ε
T 3

M and the equation of state is,

EM(TM) = ρcvTM . The flux limiter is not used in this simulation. The Planck

and Rosseland opacities are both set to a constant, κP = κR = 1.0 cm2/g,

and ε = 0.1. Heat is applied to the left-hand boundary as a result of the above
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boundary condition. As the temperature of the radiation field increases, energy

is transfered to the material. Simulations were run to a time of 3.34× 10−5µs.

At this time the wave front is still far enough away from the right boundary

that the boundary condition does not effect the solution.

Table 1 gives a comparison of implicit and semi-implicit method statistics for

this problem. The maximum order, MO, was set to 5 for all implicit runs, and

the relative errors reported are the maximum over the spatial grid computed at

the end of the simulation. Relative error is with respect to analytic evaluations

as described in Su and Olson [34].

The table shows that for each spatial grid, both methods produce approxi-

mately the same errors and that these errors are converging with the same

rate as the grid spacing is refined. We also see that the discretization errors

are independent of the time integration tolerances, indicating that the inte-

gration error is not polluting the spatial discretization error. Thus, the two

codes have similar spatial discretization accuracies and we can consider that

differences in solutions between the codes are related only to handling of time

discretizations and nonlinear couplings.

4.2 Comparisons of fully and semi-implicit

In this section we present results of two 3D simulations with radiation sources,

one in hydrogen and the other in carbon, and results of a 2D problem in hydro-

gen which includes a time-dependent material energy source. The 3D hydrogen

problem is characterized by a rapid diffusion of radiation energy which will be
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Table 1

Statistics for both fully implicit and semi-implicit solutions of the Su-Olson problem.

Maximum relative error given is for radiation temperature.

Method RTOL FAC NST NNI NLI Max. Err. RT

200 grid points

Implicit 10−5 NA 1,609 1,654 1,604 4.43 × 10−2 7.49

Implicit 10−6 NA 2,341 2,405 2,338 4.43 × 10−2 9.54

Semi-Imp. NA 10−2 3,919 NA 3,919 4.45 × 10−2 15.5

Semi-Imp. NA 10−3 39,053 NA 39,053 4.43 × 10−2 72.9

1,000 grid points

Implicit 10−5 NA 2,561 2,619 2,557 9.69 × 10−3 84.6

Implicit 10−6 NA 3,759 3,832 3,755 9.69 × 10−3 83.1

Semi-Imp. NA 10−2 5,573 NA 5,573 9.91 × 10−3 86.2

Semi-Imp. NA 10−3 55,782 NA 55,782 9.64 × 10−3 2,281.8

10,000 grid points

Implicit 10−5 NA 3,788 3,853 3,781 1.05 × 10−3 809.1

Implicit 10−6 NA 5,600 5,685 5,595 1.05 × 10−3 1,332.1

Semi-Imp. NA 10−2 7,621 NA 7,621 1.34 × 10−3 1,190.7

Semi-Imp. NA 10−3 76,540 NA 76,540 1.04 × 10−3 17,935.2
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limited by the flux limiter. Diffusion in the 3D carbon problem is slower, and

the flux limiter is of less importance. The 2D problem is characterized by a

very fast heating rate due to the nonlinear source term. These test problems

demonstrate the benefit and accuracy of fully implicit over semi-implicit.

4.2.1 Radiation source problem

In the 3D simulation, energy is supplied to the radiation field by a source

with a specified black body temperature. The radiation energy is involved in

four physical processes, heating from the source, diffusion of energy out of

the heated region, transfer of energy to the material, and interaction with

boundaries. The material energy is involved in only one process, heating via

transfer of energy from the radiation field.

In these simulations we use the LEOS equation-of-state database [20] and a

20×20×20 grid with 0.01 cm on each side. Homogeneous Neumann conditions

are used on all boundaries, and the initial radiation and material temperatures

are 15 eV .

The source is spherical positioned in a corner with a sharp boundary of radius

0.004 cm,

χ(x) = H
(√

(x − 0.01)2 + (y − 0.01)2 + (z − 0.01)2, 0.004
)

.

The source temperature, Tsource, is 300 eV .

These simulations were run for a short time interval of 10−6 µs. This final

time was kept short as these tests were designed to compare the two methods

on transient problems. Although the grid used in these examples is coarse, the

previous test case shows that errors due to the spatial approximation are the

23



same in both codes and hence cancel when the solutions are subtracted from

each other.

Figure 1 shows the Planck and Rosseland opacities over the temperature

ranges included in these runs. We see that the material energy for hydro-

gen varies more readily with temperature than it does with carbon. Similarly,

we see the opacity values decrease faster with temperature for hydrogen than

for carbon. These differences result in a more difficult problem for hydrogen

than for carbon.
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Fig. 1. Opacities over relevant temperature ranges in the 3D hydrogen (left) and

carbon (right) simulations for ρ = 1.0g/cc.

Tables 2 and 3 summarize simulations using hydrogen and carbon, respec-

tively. We see in all cases that allowing the implicit method to go to higher

orders (above 2) results in a solution requiring fewer time steps than the sec-

ond order scheme. Fewer steps are required because the integration method

can take larger steps and lower the resulting error by using a higher order

method. Comparing the implicit and semi-implicit methods in terms of com-

putation run time and number of steps, the implicit method is faster than the

semi-implicit for higher levels of requested accuracy. For the highly resolved
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solutions, for example, implicit with RTOL = 10−8 and semi-implicit with

FAC = 10−3, implicit can be several times faster.

For the hydrogen case, we see that the fully implicit method has trouble

converging in a reasonable number of time steps for large values of RTOL. We

believe this difficulty results from the method becoming numerically unstable.

Because the larger tolerances allow more error in the solution, unstable modes

can creep into the method and cause numerical instabilities. As RTOL is

reduced, however, we see significant benefits to using the high order in time

integration both in fewer numbers of time steps and also in decreased run time

as compared to the second order method.

Figure 2 shows the relative error in the radiation temperatures for both the 3D

hydrogen and carbon problems. In most cases, we see that going to higher order

gives a more accurate solution than lower order for the fully implicit method.

This accuracy difference results from the lower order method requiring smaller

time steps in order to maintain accuracy. As a result, more steps are taken,

and round off errors begin to accumulate. We also see that for all tolerances

considered, the fully implicit method is more accurate than the semi-implicit

method. Given that the semi-implicit run times are generally longer than that

for the implicit method, significant speed benefits can be delivered with the

implicit method.

25



Table 2

Statistics for 3D Hydrogen problem. (DNF = Did not finish.)

Method RTOL MO FAC NST NNI NLI RT

Implicit 10−5 2 NA DNF

Implicit 10−5 5 NA DNF

Implicit 10−6 2 NA 1,673 1,728 4,798 370

Implicit 10−6 5 NA 708 796 2,993 266

Implicit 10−7 2 NA 3,681 3,784 8,900 726

Implicit 10−7 5 NA 1,037 1,153 3,674 333

Implicit 10−8 2 NA 7,924 8,166 17,085 2,089

Implicit 10−8 5 NA 2,133 2,346 6,313 524

Semi-Imp. NA NA 10−1 181 NA 1,013 100

Semi-Imp. NA NA 10−2 1,807 NA 9,343 667

Semi-Imp. NA NA 10−3 18,089 NA 78,166 6,595

4.2.2 Fusion source problem

Our next example is a 2D fusion source problem. In this problem we have

added a material energy source which has a temperature dependence of T 5
M .

This is a good fit to a tritium-deuterium reaction rate at low temperature

(less than a few keV) such as in a tokamak fusion experiment [35] (p. 29). The

source function, µ(x, t), is a product of a step function in cylindrical radius and

a bi-cubic in time. The source, given in units of erg
cm3

1
s

1
eV 5 , which is positioned
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Table 3

Statistics for 3D Carbon problem.

Method RTOL MO FAC NST NNI NLI RT

Implicit 10−5 2 NA 648 670 1,693 156

Implicit 10−5 5 NA 401 412 1,099 88

Implicit 10−6 2 NA 1,434 1,483 3,329 314

Implicit 10−6 5 NA 807 852 2,024 192

Implicit 10−7 2 NA 3,150 3,284 6,583 581

Implicit 10−7 5 NA 1,658 1,758 3,969 377

Implicit 10−8 2 NA 6,894 7,285 12,955 1,323

Implicit 10−8 5 NA 3,462 3,832 8,112 985

Semi-Imp. NA NA 10−1 149 NA 654 61

Semi-Imp. NA NA 10−2 1,468 NA 4,986 561

Semi-Imp. NA NA 10−3 14,653 NA 29,302 4,662

in the upper right corner of the domain with a sharp boundary in space is

given by,

µ(x, t) =
(
2.31 × 10−11

)
H

(√
(x − 0.01)2 + (y − 0.01)2, 0.005

)
×

B
(
t − 10−8, 10−8

)
.

These simulations in hydrogen use a 20 × 20 grid with 0.01 cm on each side.

The initial temperatures for both radiation and material are 100 eV , and the
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Fig. 2. Evolution of relative errors for radiation temperature in solution of 3D hydro-

gen (left) and carbon (right) problems. Relative error is with respect to the implicit

simulation with RTOL = 10−8 and MO = 5.

density was taken to be 1 gm/cm3. All boundary conditions are Neumann,

and flux limiting is used for all runs. The LEOS equation of state package is

used for opacity values. The simulations are run to a final time of 2.5 × 10−8

µs.

Figure 3 shows the history of the radiation and material source function at a

point interior to the source region for this problem. For this problem energy

is supplied to the material via the source term, transfered to the radiation

and lost via diffusion. The strong nonlinear dependences of the source term

on material temperature, T 5
M , can lead to very rapid increases in temperature.

In these problems the source is turned off by the time dependence in µ(x, t).

The large heating rates can also lead to some problems with respect to au-

tomatic time step control. In the initial time period, before the source turns

on, the automatic time step control for both methods will advance to the

maximum allowed time step, HMAX. This advancement results in the system

missing the turn-on of the source. In the simulations presented here, for both
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Fig. 3. Evolution of radiation and material temperatures as well as material source

function (heating curve) profile in time for the 2D source problem.

implicit and semi-implicit methods, we bypass this problem by using a small

maximum time step. It should be noted that in all runs shown in this section,

this maximum step size only limits the step selection during the initial stages

of the source. No limitations due to this parameter were observed for other

times in the simulation. (A more consistent way of performing this simulation

would be to have a third equation in the system which models the depletion

of a fusion fuel density as its energy is added to the material. Solution of this

three equation system will be the subject of a following paper.)

Tables 4 and 5 show results of our implicit and semi-implicit simulations for

the material source problem, respectively. The values of RTOL, HMAX, and

FAC have been chosen by trial-and-error to yield a set of runs with similar

relative error. In the implicit runs we see that using higher order can lead to a

reduction in run time by a factor of two or three for the more accurate small

RTOL runs. For similar accuracy the semi-implicit is much slower. To some

extent the poor performance of the semi-implicit method can be accounted

for by the fact that this method required a much smaller value of HMAX to
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Table 4

Statistics for implicit solution of 2D matter source problem.

RTOL MO HMAX NST NNI NLI RT

10−4 2 10−9 44 64 119 0.59

10−4 5 10−9 36 51 98 0.47

10−5 2 10−9 88 123 200 1.09

10−5 5 10−9 67 101 161 0.87

10−6 2 10−9 172 214 329 1.72

10−6 5 10−9 125 177 270 1.61

10−7 2 10−9 365 423 617 4.42

10−7 5 10−9 194 266 377 3.21

10−8 2 10−9 755 849 1212 9.14

10−8 5 10−9 300 403 538 3.00

10−9 5 10−9 513 669 852 5.01

resolve the time dependence of the source.

Figure 4 shows relative errors of the material temperatures for the 2D source

problem. All methods show the same behavior, a significant increase in er-

ror once the source turns on, and a leveling off of the error once the source
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Table 5

Statistics for semi-implicit solution of 2D matter source problem.

FAC HMAX NST NLI RT

10−3 10−9 904 1,635 17

10−4 10−10 9,754 17,388 191

10−5 10−11 96,884 130,481 1,539

10−6 10−12 751,153 751,152 11,744

turns off. All methods show convergence, with tolerance, to the highly resolved

solution. Although not shown, relative errors in radiation temperature show

similar results, but over a smaller scale.
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Fig. 4. Evolution of relative errors for material temperatures in the solution of the

2D source problem. Relative error is with respect to the implicit simulation with

RTOL = 10−9 and MO = 5 at a point interior to the source region.
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4.3 Order Studies for the High Order Method

In this section, we explore the benefits of higher order and address the issue

of which orders give the most gain in computational speed to solution for a

given accuracy.

The first test is on a 3D fusion source problem. The source function, µ(x, t), is

a product of a bi-cubic function in spherical radius and a bi-cubic in time. The

source positioned in the center of the domain and given in units of erg
cm3

1
s

1
eV 5

is,

µ(x, t) =
(
4.75 × 10−11

)
B

(
t, 1.02 × 10−8

)
×

B
(√

(x − 0.005)2 + (y − 0.005)2 + (z − 0.005)2, 0.0025
)

.

These simulations in hydrogen use a 100×100×100 grid with 0.01 cm on each

side. The initial temperatures for both radiation and material were 100 eV ,

and the density was taken to be 1 gm/cm3. All boundary conditions were

Dirichlet with a 100 eV temperature, and flux limiting was used for all runs.

The LEOS equation of state package was applied for opacity values, and the

simulations were run to a final time of 2.5× 10−7 µs. All runs were done on 8

processors of ASCI Frost.

Table 6 shows solver statistics for this problem with maximum order of the

time integration set at 1, 2, 3, and 5. We see a significant gain in going from

first to second order and in going from second to third order. Little benefit is

seen in going to higher than third order. For this problem, third order is high

enough to give the required accuracy and going higher introduces overhead in

testing for changes to higher orders which will not give benefit.

32



Table 6

Statistics for implicit solution of 3D matter source problem.

RTOL MO NST NNI NLI RT

10−7 1 NA NA NA DNF

10−7 2 316 336 381 2,037

10−7 3 168 187 187 1,310

10−7 5 169 188 275 1,367

10−8 1 5,193 5,408 5,395 29,218

10−8 2 676 720 820 4,268

10−8 3 360 408 549 2,736

10−8 5 342 395 581 2,750

Figure 5 shows the solutions, heating time, and histories of time steps and

order choices for a similar test problem with a density of 2 gm/cm3 and a

final time of 2.5 × 10−4 µs. We used a higher density in this case to result

in more transfer of energy from the matter to the radiation field. Also in this

case we incerased the strength of the material heating source. We use the

µ(x, t) of the above simulation with the leading constant factor increased to

9.5×10−11. A longer time was used to give more information on order and step

selection. In this problem, we clearly see the heating stage where the matter

temperature undergoes significant increases then levels off while some of the

energy is transferred to the radiation. Both field decrease in energy toward

the end of the run as energy leaves the domain due to the Dirichlet boundary
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condition.

The order history shows the method initially using third order as the heating

region is traversed. After heating, the method reduces to second order for

the majority of the rest of the run. The step size stays constant initially,

then increases before the exponential portion of the heating begins. When

the heating becomes significant, the step size is reduced, then increases again

after the heating phase. The step continues to increase with a brief pause

coinciding with a move to fourth order. These changes are a result of the

method adjusting to the solution “settling down” after the large changes from

heating and transfer of energy from matter to radiation. As the energy leaves

the system, we see the order and step sizes change simultaneously. In general,

a larger time step creates a larger error and a larger order reduces the error.

Thus, we see that the method will raise the step and reduce the order, then

adjust back. Toward the end of the run, we see these adjustments happen

frequently as the solution shows energy decreases.
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Fig. 5. Left: Heating time and temperature solutions for the 3D matter source

problem. Temperatures are recoirded at the center of the source. Right: Time step

and order history for implicit high order solution method.
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These results show the ability of the variable order, variable step method to

adjust to solution changes while maintaining a given requirement on the size

of the local time integration truncation error. This type of adaptivity results

in fewer time steps and thus lower round off error accumulation.

4.4 Results for Large-Scale Computations

In this section, we present results of parallel scalability studies for the fully

implicit high order solution method. These studies give a measure of how well

the solution method makes use of additional resources to solve larger problems.

The first study was done with a constant opacity problem running on ASCI

Red at Sandia National Laboratory. The next two studies were done using

the LEOS tabulated opacity data base on radiation source and fusion source

problems running on ASCI Frost at Lawrence Livermore National Laboratory.

In all studies in this section except the last, we used the PFMG multigrid

method [36] rather than the SMG method mentioned earlier. We applied this

algorithm because the PFMG method scales better to very large numbers of

processors. Our last study was done with the SMG method and compares

scaling results using this preconditioner with the PFMG method.

The first study ran on 5,832 processors of ASCI Red, an Intel machine with one

processor per node running MPI for parallel communications. The system (1)-

(2) was solved on the box D ≡ {(x, y, z) : 0 ≤ x, y, z ≤ 1cm} with no matter

source and a constant radiation source with Tsource = 300eV at the center of

the domain. Constant Dirichlet conditions of T = 300K were applied on all

boundaries. Initial conditions for both the radiation and matter were given by
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Table 7

Statistics for scalability study on ASCI Red with constant opacity problem.

Processor NST NNI NLI RT Avg. Cost Step Scaled

Topology per Step Efficiency

1 × 1 × 1 123 140 186 2,485 20.2 100%

2 × 2 × 2 113 127 160 2,518 22.3 91%

4 × 4 × 4 105 119 154 2,424 23.1 88%

8 × 8 × 8 119 136 191 2,761 23.2 87%

16 × 16 × 16 116 129 212 2,970 25.6 79%

18 × 18 × 18 112 130 214 3,001 26.8 75%

TR,0 = TM,0 = 300K. The equation of state was given simply as TM = EM ,

and the matter density was taken as ρ = 1.0g/cc. The Planck and Rosseland

opacities were set constant and equal as κP = κR = 105cm2/g. Flux-limiting

was turned on for all runs, and the simulation was run to 0.01s.

For this study, we added both unknowns and processors as we scaled up the

problem keeping a spatial grid of Nx = Ny = Nz = 40 on each processor. Thus,

problem size and computational resources were simultaneously increased.

Table 7 contains the results of the study. The reported scaled efficiency for a

run on N processors was calculated by dividing the cost per step for the single

processor run by the cost per step for the N processor case. As can be seen,

all the statistics scaled extremely well. As this problem is dominated by the

local coupling of the two fields (and not the diffusion operator), a high scaled

efficiency is expected. In fact, we see 75% scaled efficiency for the largest test
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case with 373.2M grid cells.

Our next scalability study was run on ASCI Frost with the LEOS equation-

of-state data base. The system (1)-(2) was solved on the box D ≡ {(x, y, z) :

0 ≤ x, y, z ≤ 0.01cm} filled with carbon with no matter source and a constant

radiation source with Tsource = 300eV . The source which is positioned in the

center of the domain with a sharp boundary and radius of 0.002 cm is given

by,

χ(x) = H
(√

(x − 0.005)2 + (y − 0.005)2 + (z − 0.005)2, 0.002
)

.

Neumann condition are applied on all boundaries, and the initial tempera-

ture for radiation and material was 15 eV . No flux-limiting was applied. The

problem was run to a final time of 2.5 × 10−8 µs with a relative tolerance of

10−6.

There were 40×40×40 grid cells per processor, and we scaled up the number

of processors from 1 to 448 giving a total of 28.67M grid cells. Since ASCI

Frost has 16 processors per node and communication can be faster within a

node than without, we used 8 processors per node for all but the two largest

runs where we used 12 and 14 processors per node, respectively.

Table 8 shows the solver statistics and scaled efficiencies for this study. We see

that as the problem size gets larger, the number of steps and solver iterations

go up then decrease, but do not change dramatically. These results indicate

that the solution method is able to solve these refined problems effectively.

In addition, the run time does not significantly increase with scaling up the

processors and unknowns simultaneously. We see a leveling off of the scaled

efficiency for the total simulation run time at about 82%.
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Table 8

Statistics for scalability study on ASCI Frost with tabulated opacity, radiation heat-

ing source problem.

Processor NST NNI NLI RT Scaled Scaled

Topology Efficiency Efficiency

simulation per step

1 × 1 × 1 489 521 901 1,401 100% 100%

2 × 1 × 1 563 590 1,098 1,673 84% 96%

2 × 2 × 2 588 611 1,085 1,718 82% 98%

4 × 2 × 2 559 579 1,177 1,836 76% 87%

4 × 4 × 4 529 548 1,082 1,716 82% 88%

6 × 6 × 6 479 498 983 1,735 81% 79%

8 × 8 × 7 463 482 958 1,704 82% 78%

Our last scalability study was run on ASCI Frost with the LEOS equation-of-

state data base. The system (1)-(2) was solved on the box D ≡ {(x, y, z) : 0 ≤
x, y, z ≤ 0.01cm} with no radiation source and a nonlinear material heating

source. The box was filled with hydrogen, and flux-limiting was applied. The

material heating source, given in units of erg
cm3

1
s

1
eV 5 , is positioned in the center

of the domain with a smooth boundary at a radius of 0.0025 cm and is given

by

µ(x, t) =
(
4.75 × 10−11

)
B

(
t, 10−8

)
×

B
(√

(x − 0.005)2 + (y − 0.005)2 + (z − 0.005)2, 0.0025
)

.
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In this simulation, the source is turned off by the time dependence in µ(x, t).

The time dependence of this function is a maximum at t = 0 then turned off

with a half width in time of 1.0×10−8 µs. Neumann conditions were applied on

all boundaries. The initial temperature for radiation and material was 100 eV .

The problem was run to a final time of 2.5× 10−8 µs with a relative tolerance

of 10−7.

Similar to the previous example, we used 40× 40× 40 grid cells per processor

and scaled up the number of processors from 1 to 448 with the same numbers

of processors per node in use.

We performed two scalability studies for this test problem. In the first, we

applied the PFMG multigrid method to solve the Schur complement system

(3.1). Results for this study are found in Table 9 where we see a scaled effi-

ciency of the simulation of about 67% for 448 processors. Table 10 contains

the results of the same study but with the SMG method applied to solve the

Schur complement system. Here the scaled efficiencies are still decreasing and

are at 46% for 448 processors. The difference between these two studies is due

to the fact that the SMG solver includes more coupling in the method and

thus requires more parallel communication. The increased couplings result in

better algorithmic scaling, as can be seen from the nearly level numbers of

time steps, nonlinear iterations, and linear iterations with the SMG precon-

ditioner, but results in less parallel efficiency. These two scaling studies show

a classic tradeoff between algorithm and implementation scalabilities. We fur-

ther note that both the PFMG and SMG preconditioners used in these studies

were taken from the hypre library [37,38], and the developers of this library

indicated that they have seen similar differences between the two methods.
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Table 9

Statistics for scalability study on ASCI Frost with tabulated opacity, material heat-

ing source problem, PFMG multigrid method.

Processor NST NNI NLI RT Scaled Scaled

Topology Efficiency Efficiency

simulation per step

1 × 1 × 1 124 145 258 439 100% 100%

2 × 1 × 1 118 136 278 454 97% 92%

2 × 2 × 2 112 129 255 431 102% 92%

4 × 2 × 2 133 142 333 529 93% 89%

4 × 4 × 4 120 134 259 459 96% 93%

6 × 6 × 6 124 138 269 500 88% 88%

8 × 8 × 7 144 156 338 654 67% 78%

5 Conclusions

We have presented a fully implicit solution method for radiation diffusion

problems with highly nonlinear sources. Our method makes use of high order

in time integration techniques, inexact Newton-Krylov nonlinear solvers, and

multigrid preconditioning. We have incorporated the use of tabular opacities

in our model in an effort to enhance the accuracy of our test problems as well

as to evaluate the added costs of additional function evaluations in the fully

implicit approach. Our results indicate that a fully implicit solution approach

can achieve more accurate solutions than semi-implicit solution methods in
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Table 10

Statistics for scalability study on ASCI Frost with tabulated opacity, material heat-

ing source problem, SMG multigrid method.

Processor NST NNI NLI RT Scaled Scaled

Topology Efficiency Efficiency

simulation per step

1 × 1 × 1 117 141 164 393 100% 100%

2 × 1 × 1 110 127 171 419 94% 88%

2 × 2 × 2 101 115 150 414 95% 82%

4 × 2 × 2 99 110 151 448 88% 74%

4 × 4 × 4 97 109 156 531 74% 61%

6 × 6 × 6 106 119 165 688 57% 52%

8 × 8 × 7 101 113 163 858 46% 40%

many simulations involving the interaction of radiation and matter with highly

nonlinear source terms. Furthermore, the fully implicit approach can be as cost

effective as semi-implicit approaches in many cases despite the use of tabulated

values for the opacities. Lastly, the solution approach is shown to scale well

to very large problems solved on parallel machines.
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